DOI: https://doi.org/10.32515/2413-340X.2018.33.182-189

Methods of Elaboration of Dynamic Decision Making Model in the System of Personnel Security of Enterprise

Panchenko Volodymyr

About the Authors

Panchenko Volodymyr, Associate Professor, PhD in Economics (Candidate of Economic Sciences), Deputy Director on Educational Work, Higher Education Institution Kirovohrad Cooperative College of Economy and Law named after N.P. Sai Kirovohrad Regional Union of Consumer Societies, Kropyvnytskyi, Ukraine, E-mail: op_panchenko@ukr.net

Abstract

The most common methods of constructing control systems are based on the use of mathematical models of objects. However, for the vast majority of both artificial and natural objects of management, the construction of accurate mathematical models is practically impossible in view of their complex formalization. In addition, these objects function in an environment whose properties change or can not be determined in advance. In the case of poor formalization of the control object, the problem of constructing a system based on intellectual principles is updated. The aim of the work is to improve the process of dynamic decision making method based on intellectual techniques, which will allow increasing the quality of the personnel security management system. The approach to the dynamic decision making method electing in the personnel security system was improved by constructing an analytical hierarchical model that will scientifically substantiate the selected intellectual technology by processing the statistical data and expert information. The matrices of pairwise comparisons of alternatives according to certain criteria were developed, the matrices were normalized, the coefficients of consistency of estimates were calculated, the weight of the criteria was determined, and the weighted average rating of intellectual methods was constructed. The usage of fuzzy logic tools for the construction of a dynamic decision making model in the personnel security system of the enterprise was substantiated. The scientific novelty of the work is an improved approach to the process of dynamic decision making method electing of the personnel security management system by constructing an analytical hierarchical model that will scientifically substantiate the selected intellectual technology by processing the statistical data and expert information and allow to increase the quality of the personnel security management system. The practical value lies in applying the Saati method to automate the process of choosing a method for developing a dynamic management model of the personnel security system. The prospect of the study is the development of a dynamic decision-making model with the usage of fuzzy logic tools for the personnel security intelligent management system.

Keywords

personnel security, dynamic decision making model, economic security, qualitative indicators, multicriterion models, intellectual management, fuzzy logic, Saaty method

Full Text:

PDF

References

Leonenkov, A. V. (2003). Nechetkoe modelirovanie v srede MATLAB i fuzzyTECH [Fuzzy modeling in the environment of MATLAB and fuzzyTECH]. SPb. : BHV-Peterburg [in Russian].

Musina, V. F. (2013). Bayesovskie seti doveriya kak veroyatnostnaya graficheskaya model dlya otsenki ekonomicheskih riskov [Bayesian belief networks as probabilistic graphical model for economical risk assessment]. Trudy SPIIRAN – SPIIRAS Proceedings, Vol. 2, 25, 235-254 [in Russian].

Tyurin, N.M., & Baksalova, O.M., (2015). Kadrovaya bezopasnost kak sostavlyayuschaya Ekonomicheskoy bezopasnosti predpriyatiya [Personnel security as a component of the economic security of the enterprise] Visnik Hmelnitskogo natsionalnogo universitetu. Ekonomichni nauki – Vestnik Khmelnitsky National University. Economic sciences, 2, 230-234 [in Ukrainian]

Horev, A. I., Gorkovenko, E. V., & Platonova, I. V. (2014). Upravlenie kadrovoy bezopasnostyu organizatsii. [Management of personnel security of the organization]. Actualnyye problemy gumanitarnyh I estestvennyh nauk - Actual problems of humanitarian and natural sciences, 11-1, 181-184 [in Russian].

Yudina, L.N. (2006). Formirovanie i razrabotka sistemyi otsenki trudovogo potentsiala [Formation and development of a system for assessing labor potential]. Sibirskaya finansovaya shkola - Siberian Finance School, 4, 59-63 [in Russian].

Yasnitskiy, L. N., Mihaleva, Yu. A., & Cherepanov, F. M. (2014). Vozmozhnosti metodov iskusstvennogo intellekta dlya vyiyavleniya i ispolzovaniya novyih znaniy na primere zadachi upravleniya personalom [The possibilities of artificial intelligence methods for identifying and using new knowledge on the example of the problem of personnel management]. Zhurnal Formiruyuschihsya Napravleniy Nauki - International Journal of Unconventional Science, 6, 32-41. Retrieved from http://www.unconv-science.org/n6/yasnitsky/ [in Russian].

Adamuthe, A. C., Mane, S. U., & Thampi, G. T. (2012). Genetic algorithmic approach for security personnel scheduling. (2012). International Conference on Communication, Information & Computing Technology (ICCICT), IEEE. (pp. 1-6) [in English].

Gargano, M. L., Marose, R. A., & Kleeck, L. Von. (1991). An application of artificial neural networks and genetic algorithms to personnel selection in the financial industry. First International Conference on Artificial Intelligence Applications on Wall Street, 1991. Proceedings. IEEE. (pp. 257-262) [in English].

Herrera, F., López, E., Mendaña, C., & Rodrı́guez, M.A. (2001). A linguistic decision model for personnel management solved with a linguistic biobjective genetic algorithm. Fuzzy Sets and Systems, Vol. 118, 1, 47-64 [in English].

Kavun, S., Mykhalchuk, I., Kalashnykova, N., & Zyma, Z. (2012). Method of Internet-Analysis by the Tools of Graph Theory. Advances in Intelligent Decision Technologies, Vol. 15, Part 1, 35–44 [in English].

Saaty, T.L. (1985). Decision making for leaders. IEEE Transactions on Systems, Man, and Cybernetics, 3, 450–452 [in English].

Saaty, T.L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, Vol. 1, 1, 83–98 [in Enlish].

GOST Style Citations

  1. Леоненков А. В. Нечеткое моделирование в среде MATLAB и fuzzyTECH [Текст] / А. В. Леоненков. – СПб. : БХВ-Петербург, 2003. – 736 с.
  2. Мусина В.Ф. Байесовские сети доверия как вероятностная графическая модель для оценки экономических рисков [Текст] / В.Ф. Мусина // Труды СПИИРАН. – 2013. – Вып. 2(25). – С. 235–254.
  3. Тюрін Н.М. Кадровая безопасность как составляющая єкономической безопасности предприятия [Текст] / Н.М. Тюрін, О.М. Баксалова // Вiсник Хмельницького нацiонального унiверситету. Економiчнi науки. – 2015. – №. 2. – С. 230–234.
  4. Хорев А.И. Управление кадровой безопасностью организации [Текст] / А.И. Хорев, Е.В. Горковенко, И.В. Платонова // Актуальные проблемы гуманитарных и естественных наук. – 2014. – №. 11–1. – С. 181–184.
  5. Юдина Л.Н. Формирование и разработка системы оценки трудового потенциала [Текст] / Л.Н. Юдина // Сибирская финансовая школа. – 2006. – №. 4. – С. 59–63.
  6. Ясницкий Л.Н. Возможности методов искусственного интеллекта для выявления и использования новых знаний на примере задачи управления персоналом [Электронный ресурс] / Л.Н. Ясницкий, Ю.А. Михалева, Ф.М. Черепанов // International Journal of Unconventional Science. Журнал Формирующихся Направлений Науки. – 2014. – №. 6. – С. 32–41. – Режим доступу: http://www.unconv-science.org/n6/yasnitsky/
  7. Adamuthe A. C., Mane S. U., Thampi G. T. Genetic algorithmic approach for security personnel scheduling [Тext] / A. C. Adamuthe, S. U. Mane, G. T. Thampi // 2012 International Conference on Communication, Information & Computing Technology (ICCICT). – IEEE, 2012. – P. 1–6.
  8. Gargano M. L., Marose R. A., Kleeck L. von An application of artificial neural networks and genetic algorithms to personnel selection in the financial industry [Тext] / Gargano M. L., Marose R. A., von Kleeck L. // First International Conference on Artificial Intelligence Applications on Wall Street, 1991. Proceedings. – IEEE, 1991. – P. 257–262.
  9. Herrera F. A linguistic decision model for personnel management solved with a linguistic biobjective genetic algorithm [Тext] / Francisco Herrera, Enrique López, Cristina Mendaña, Miguel A. Rodrı́guez // Fuzzy Sets and Systems. – 2001. – Т. 118. – №. 1. – P. 47–64.
  10. Kavun, S. A. Method of Internet-Analysis by the Tools of Graph Theory [Тext] / S. Kavun, I. Mykhalchuk, N. Kalashnykova, A. Zyma // Advances in Intelligent Decision Technologies. – 2012. – Vol. 15, Part 1. – P. 35–44.
  11. Saaty T.L. Decision making for leaders [Тext] / T.L. Saaty // IEEE Transactions on Systems, Man, and Cybernetics. – 1985. – №. 3. – P. 450–452.
  12. Saaty T.L. Decision making with the analytic hierarchy process [Тext] / T.L. Saaty //International Journal of Services Sciences. – 2008. – Т. 1. – №. 1. – P. 83–98.
Copyright (c) 2018 Panchenko Volodymyr